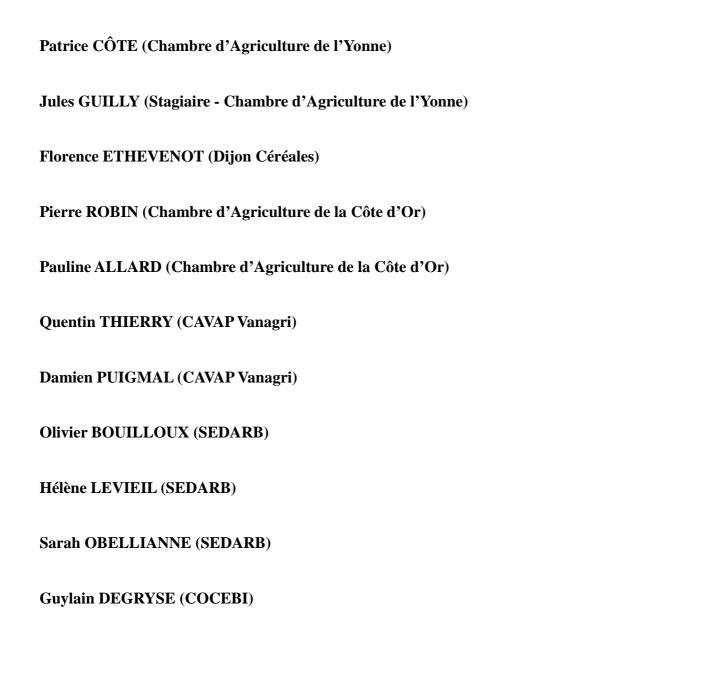


COMPTE-RENDU

ESSAIS EN AGRICULTURE BIOLOGIQUE POUR LA REGION BOURGOGNE

CAMPAGNE 2013/2014

Avec le soutien financier de :



ACTION REALISEE DANS LE CADRE DES PROGRAMMES

- « Systèmes de culture innovants vers une agriculture durable » financé par le Fonds Européen Agricole pour le Développement Rural : L'Europe investit dans les zones rurales
- « Systèmes de culture innovants, Ecophyto 2018, 0 herbicide ? » financé par le Conseil Régional de Bourgogne
- « Programme Régional de Développement Agricole et Rural » financé par le CASDAR

LISTE DES PARTICIPANTS AUX ESSAIS

Nous tenons à remercier toutes les agricultrices et tous les agriculteurs qui ont participé à ces essais, pour leur disponibilité et leur implication.

SOMMAIRE

BILAN CLIMATIQUE DE L'ANNEE 2013-2014

CEREALES

ESSAI VARIETES BLE D'HIVER (CA21 + Dijon Céréales)	Page 1
ESSAI VARIETES BLE D'HIVER (COCEBI)	Page 5
ESSAI VARIETES BLE DE PRINTEMPS (CA21 + CA89 + Dijon Céréales)	Page 8
ESSAI VARIETES BLE D'HIVER SEMES AU PRINTEMPS (CA21 + CA89 + Dijon Céréales)	Page 12
ESSAI VARIETES TRITICALE D'HIVER (COCEBI)	Page 14
ESSAI VARIETES TRITICALE DE PRINTEMPS (CA21 + CA89 + Dijon Céréales)	Page 16
ESSAI FERTILISATION AZOTEE SUR BLE D'HIVER (CA21 + CA89)	Page 18
ESSAI INTERACTION AZOTE – SOUFRE SUR BLE D'HIVER (CA21 + CA89 + Dijon Céréales)	Page 24
ESSAI FERTILISATION BLE TENDRE D'HIVER (CA21 + Dijon Céréales)	Page 27

LUZERNE

ESSAI FERTILISATION SUR LUZERNE (CA21 + Dijon Céréales)

Page 30

CIPAN

ESSAI IMPACT DES INTERCULTURES SUR LA CULTURE SUIVANTE (CA89 + CAVAP Vanagri)

Page 32

GESTION DES ADVENTICES

ESSAI LUTTE AGRONOMIQUE CONTRE LA FOLLE AVOINE (SEDARB)

Page 37

ESSAI DESHERBAGE MECANIQUE (SEDARB)

Page 40

ANNEXE

BILAN CLIMATIQUE DE L'ANNEE 2013-2014

PERIODE OU MOIS	CARACTERISTIQUES	CONSEQUENCES AGRONOMIQUES	CONSEQUENCES PHYTOTECHNIQUES
		Forte minéralisation.	Pousse et élongation des tiges de colza.
Octobre	Très humide.	Faux semis inefficace.	Salissement des parcelles semées sur octobre.
		Retard de semis.	Diminution du potentiel de rendement des céréales d'hiver.
Novembre	Humide.	Sol moins humide en surface.	Semis des céréales d'hiver possible dans des conditions parfois limites.
		Ennoyage en sol peu filtrant.	Problème de développement racinaire des cultures dans les sols trop
		Pas de restructuration du sol par le gel.	compactés.
Décembre à	Doux et pluvieux.	Levée et croissance des céréales semées	Peu de perte de pieds.
février	Très faibles gelées.	en octobre.	Développement des céréales semées tard.
ieviiei	ites faibles gelees.	Prolifération des maladies cryptogamiques	Piétin verse et septoriose, qui régresseront.
		sur céréales à pailles et constitution d'un	Rouille jaune qui sera un problème sur certains cultivars de BTH.
		stock d'inoculum important.	
		Régression et destruction des tissus	Arrêt du développement des maladies cryptogamiques sauf rouille jaune
		végétaux.	sur blé d'hiver.
		Problème de minéralisation des fertilisants	Réduction de la fertilité des organes fructifères sur les céréales.
		annuels.	
Mars et avril	Très secs et chauds.	Problèmes d'alimentation azotée en sol	
		superficiel et/ou conduits sans	
		amendements.	
		Limitation de la présence d'insectes.	Peu d'insectes sur colza et sur fabacées.
		Sol sec.	Problème de levée et de mise en place des tournesols, sojas
		Peu de minéralisation endogène.	Faible tallage épis des céréales de printemps.
Mai	Sec et frais.	Faible minéralisation de la fertilisation	
IVIdI	Sec et irais.	positionnée sur le sol.	
		Stress hydrique.	Présence importante de pucerons sur tournesol.
		Stress hydrique.	Avortement des gousses sur fèverole et pois.
Juin	Très sec et chaud.	Echaudage physiologique.	Problème de remplissage des grains sur BTH, conséquence sur le PS.
		Maturation forcée des céréales d'hiver.	Pas ou peu de dormance sur certains cultivars de BTH.
Juillet		Forte humidité ambiante.	Pailles noires : cladosporiose.
Août	Pluie, températures		BTH, colza, et parfois orge de printemps et pois : germination sur pieds
	fraiches.		de certains cultivars.
			Récolte parfois tardive qui influence les dégradations des PS.

ESSAI VARIETES BLE D'HIVER

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plaine de Dijon.

Type de sol : Argilo limoneux profond (supérieur à 90 cm)

Précèdent : Colza conventionnel

Date de semis : 30/10/2013 Densité de semis : 450 grains/m²

Fertilisation : 100 unités d'azote sous forme de Dix le 25 février 2014

OBJECTIF DE L'ESSAI

Comparer différentes variétés de blé dans le contexte pédo-climatique de la Plaine de Dijon.

PRESENTATION DE L'ESSAI

Ce tableau reprend les observations réalisées sur les maladies présentent dans cet essai.

La rouille jaune était présente. Elle est notée de 0 à 10 ; 0 correspond à une variété indemne alors que la note de 10 correspond à une variété totalement contaminée. Les variétés infestées par la rouille jaune obtiennent de mauvais rendements (Saturnus et Gregorius).

Les comptages ont eu lieu les 16 mai 2014 pour les maladies et les hauteurs à épiaison et le 2 juin 2014 pour le nombre d'épis.

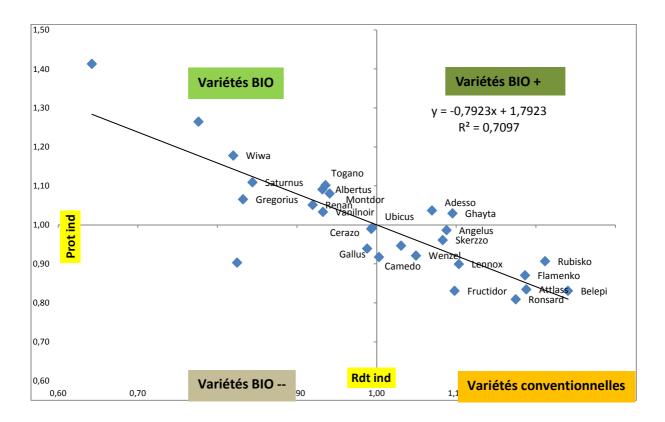
Il y a une faible corrélation entre le nombre d'épis et le rendement obtenu. Le poids de 1 000 grains et la fertilité des épis ont joué sur le rendement.

Variétés	Moyenne de Rouille DFE	Moyenne du nombre d'épis/m²	Moyenne des hauteurs à épiaison en cm
Adesso	0	360	91
Albertus	1	279	83
Angelus	0	366	76
Attlass	1	337	67
Belepi	1	317	70
Camedo	2	327	68
Cerazo	2	339	93
Flamenko	1	352	82
Fructidor	0	325	65
Gallus	0	357	94
Ghayta	0	351	77
Gregorius	3	283	82
Lennox	0	343	78
Montdor	0	267	80
Renan	3	295	70
Ronsard	0	306	66
Rubisko	0	325	71
Saturnus	4	341	73
Skerzzo	1	309	67
Togano	0	313	73
Ubicus	0	289	75
Vanilnoir	0	331	69
Wenzel	0	272	92
Wiwa	0	320	85
Moyenne générale	1	318	79

Les notations surlignées en vert correspondent à des données supérieures à la moyenne. Les notations en orange, sont supérieures à la moyenne.

Variétés	Moyenne du rendement (qx/ha)	Moyenne du PS	Moyenne des protéines	Moyenne du PMG	Moyenne de l'N immo uN/ha	Moyenne d'uN/q
Adesso	45	81	9,6	45	108	2,4
Albertus	39	81	10,1	42	100	2,5
Angelus	45	79	9,1	43	105	2,3
Attlass	49	74	7,7	46	96	1,9
Belepi	52	72	7,7	44	100	1,9
Camedo	42	77	8,5	45	90	2,1
Cerazo	41	73	9,1	45	96	2,3
Flamenko	49	73	8	48	100	2
Fructidor	46	74	7,7	42	89	1,9
Gallus	41	77	8,7	50	91	2,2
Ghayta	46	75	9,5	50	110	2,4
Gregorius	35	77	9,8	43	86	2,5
Lennox	46	76	8,3	43	97	2,1
Montdor	39	78	10	50	99	2,5
Renan	38	76	9,7	52	94	2,5
Ronsard	49	73	7,5	45	93	1,9
Rubisko	50	73	8,4	50	107	2,1
Saturnus	35	80	10,2	43	90	2,6
Skerzzo	45	77	8,9	44	102	2,2
Togano	39	76	10,2	44	101	2,6
Ubicus	41	75	9,2	44	97	2,3
Vanilnoir	39	77	9,5	38	94	2,4
Wenzel	44	74	8,5	46	94	2,1
Wiwa	34	81	10,9	42	95	2,7
Moyenne générale	42	76	9,2	44	96	2,3

Les rendements ont une amplitude de 34 à 52 quintaux. Les blés qui obtiennent les plus hauts rendements sont des blés type conventionnel, qui ont un taux de protéines faible ainsi qu'un PS faible.


A l'inverse, les blés qui obtiennent les plus faibles rendements, ont des PS moyens ou élevés avec des protéines élevées.

Les blés qui obtiennent les meilleurs rendements immobilisent moins d'azote par quintal produit que les blés à faible rendement.

Malgré une année atypique, les rendements de cet essai sont élevés. Ils permettent de ségréguer les variétés entre elles et de révéler leur sensibilité à la rouille jaune.

Le graphique ci-dessous caractérise les catégories de blés pour cette campagne, sur cet essai de la Plaine de Dijon.

ESSAI VARIETES BLE D'HIVER

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Limoneux (0-50cm).

Précèdent : Epeautre.
Densité de semis : 450 grains/m².

Essai non fertilisé

OBJECTIF DE L'ESSAI

Comparaison de 21 variétés de blé d'hiver.

PRESENTATION DE L'ESSAI

La parcelle a eu une forte pression de piétin qui peut s'expliquer par deux précédentes années en céréales dont la dernière en épeautre grêlé.

La pression en rouille jaune a été importante.

RECOLTE

Les teneurs en protéine sont faibles sur l'essai. Cela correspond au contexte de l'année.

	Rendement	Protéine
Attlass	32,6	9,4
Rubisko	31,2	9,8
Hendrix	30,5	9,8
Ghayta	28,1	10,6
Titlis	27,2	10,5
Skerzzo	27,2	10,5
Energo	26,4	10,6
Camp remy	25,6	9,8
Gallus	25,2	10,3
Midas	25,0	10,6
Ubicus	25	11.5
Chevallier	24,9	9,8
Angelus	24.8	9.8
Renan	24,5	11,1
Lukullus	23,9	10,8
Capo	23,3	10,7
Togano	22,7	11,5
Adesso	21,5	11,0
Saturnus	18,7	11,0
Pireneo	15,6	11,0
Triso	9,6	11,1
Moyenne	24,8	10,6

Pirénéo et Triso ont un très faible rendement du fait de leur sensibilité à la rouille jaune.

Pirénéo reste malgré tout une variété intéressante pour son pouvoir couvrant et ses résultats rendement protéine sur les zones rarement touchées par la rouille jaune.

Capo et Adesso ont été particulièrement handicapés par leur sensibilité piétin, maladie qui s'est beaucoup exprimée sur l'essai (seconde paille, sur sol limoneux). A éviter en seconde paille.

Attlas, Hendrix et **Rubisko** sont très productifs avec des protéines faibles. **Attlass** et **Hendrix** sont plus réguliers que Rubisko sur nos essais.

Lukullus est polyvalent et assez haut. Il est un bon compromis rendement/protéine.

Skerzzo, a donné de bons résultats cette année. Il peut-être semé plus tard que Renan.

Energo. Blé haut, bon compromis rendement/protéine. Une variété phare.

Ghayta est une nouveauté, elle s'est bien comportée sur les essais COCEBI et BIOCER.

Adesso décevant cette année en rendement à cause du piétin sur l'essai. Il reste en observation. (Bon compromis sur les essais l'an passé et très bon comportement au champ)

Angelus est très décevant avec une productivité moyenne et un taux de protéine 1,3% inférieur à Renan

Togano est un blé alternatif type Triso qui donne de bons résultats agronomiques (bonne tolérance froid et rouille jaune comparée à Triso), semis conseillé à partir du 10 novembre. Très bon en protéine.

Ubicus nouveauté suivie sous numéro depuis 3 ans, très bon compromis rendement/protéine.

ESSAI VARIETES BLE DE PRINTEMPS

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Argilo-calcaire superficiel (0-50cm).

Précèdent : Blé d'hiver.

Date de semis : 11 mars 2014.

Densité de semis : 450 grains/m².

Fertilisation: Vinasse 80 unités d'azote/ha enfoui avant semis.

OBJECTIF DE L'ESSAI

Comparaison de 16 variétés de blé de printemps et de blé alternatif.

PRESENTATION DE L'ESSAI

Les variétés testées cette année sont :

Variété	Représentant	Année d'inscription	Classe
Epos	Lemaire Deffontaines	2005	BPS
Guadalete	Florimond Desprez	2013	BPS
LD-BTP7	Lemaire Deffontaines	2015	BPS
Lennox	Saaten Union	2012	А
Miradoux	Florimond Desprez	2007	BDHQ
Nikelino	RAGT		
Nogal	Florimond Desprez	2006	BPS
Olivart	Sem-Partners	2006	BPS
Sensas	RAGT	2007	BAF
Septima	Agri-Obtention	2008	BAF
Sorbas	Sem-Partners		
Specifik	Lemaire Deffontaines	2009	А
Togano	Rolly	2004	BAF
Triso	Sem-Partners	2000	BAF
Tulip	Saaten Union	2010	ВР

Levée et caractéristiques à l'épiaison :

Variétés	Moyenne d'homogénéité à la levée	Moyenne de la hauteur en cm	Moyenne du Nombre d'épis/m²
Epos	5,0	71,8	328
Guadalete	2,5	66,0	238
LDP7	5,2	68,5	296
Lennox	3,8	67,8	308
Miradoux	4,5	64,0	284
Nikelino	2,2	69,0	240
Nogal	0,3	47,8	242
Olivart	2,0	57,3	276
Sensas	4,2	70,5	253
Septima	4,5	58,8	232
Sorbas	7,5	80,3	298
Specifik	4,0	67,0	264
Togano	3,5	64,5	247
Triso	5,2	71,5	230
Tulip	2,8	63,0	297
Moyenne générale	3,8	63,2	268,6

Les notes d'homogénéité correspondent à des notations réalisées le 30 avril 2014. 1 est la note la plus faible (hétérogène) et 10 la note la plus forte (homogène).

Les hauteurs présentées dans ce tableau sont les relevés du 7 juillet 2014. Les tailles des blés à cette date, varient de 47,8 centimètres pour le plus petit à 80,3 centimètres pour le plus grand. Sorbas est le blé le plus haut sur cet essai.

Le nombre d'épis par mètre carré a été comptabilisé le 7 juillet 2014. Les amplitudes sont de 230 à 328 épis/m².

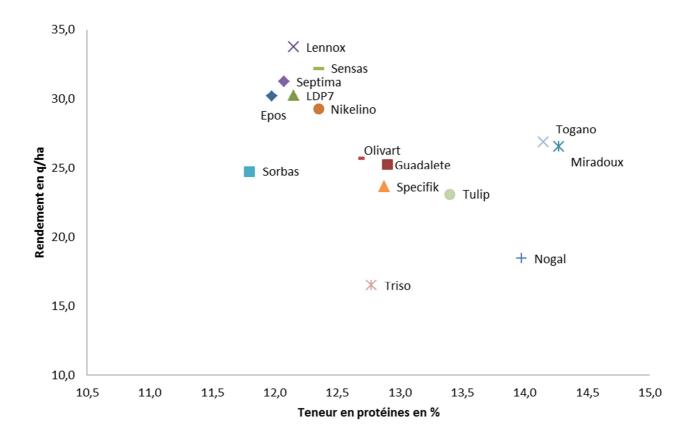
Ce faible nombre d'épis peut avoir plusieurs causes : mauvaises conditions de semis, sols très motteux, excès d'eau, coup de sec,...

Au niveau des maladies, les impacts de rouille jaune et/ou de septoriose sont très variables entre les variétés :

Variétés	Moyenne de la tolérance à la rouille	Moyenne de la tolérance à la Septoriose
Epos	7	8
Guadalete	3	8
LDP7	8	3
Lennox	9	8
Miradoux	6	8
Nikelino	8	8
Nogal	6	8
Olivart	6	8
Sensas	7	8
Septima	9	3
Sorbas	3	8
Specifik	6	2
Togano	4	3
Triso	2	8
Tulip	8	8
Moyenne générale	6	7

Plus la note est proche de 10, plus la variété est indemne de maladie. A l'inverse, plus elle est proche de 1, plus elle est sensible à la maladie.

Ces notes sont des moyennes lors de l'observation des variétés sur les différentes micro-parcelles. On remarque que Septima, Guadalete et Specifik ont une présence faible d'ergots sur les épis.



RECOLTE

La récolte de cet essai a été réalisée le 6 aout 2014.

Les rendements de cet essai sont compris entre 16,5 et 33,8 quintaux par hectare.

Les taux des protéines sont bons puisqu'ils sont compris entre 11,8 à 14,3 %. A l'inverse, les PS sont faibles (risque de déclassement).

Le graphique ci-dessus reprend le rendement et le taux de protéines des différentes variétés de blé.

Variétés	Moyenne du Rendement corrigé en quintaux/ha	Moyenne de Protéines	Moyenne de PS
Epos	30,2	12,0	64
Guadalete	25,2	12,9	65
LDP7	30,2	12,2	65
Lennox	33,8	12,2	65
Miradoux	26,5	14,3	64
Nikelino	29,3	12,4	67
Nogal	18,4	14,0	59
Olivart	25,7	12,7	62
Sensas	32,2	12,4	70
Septima	31,3	12,1	68
Sorbas	24,7	11,8	68
Specifik	23,7	12,9	67
Togano	26,9	14,2	65
Triso	16,5	12,8	65
Tulip	23,1	13,4	60
Moyenne générale	26,5	12,8	65

Les PS particulièrement bas sont dus aux conditions de l'année (températures excessives en juin). Le niveau de rendement de l'essai est correct dans ce type de situation.

ESSAI VARIETES BLE D'HIVER SEME AU PRINTEMPS

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Argilo-calcaire superficiel (0-50 cm).

Précèdent : Blé d'hiver.

Date de semis : 11 mars 2014.

Densité de semis : 450 grains/m².

Fertilisation: Vinasse 80 unités d'azote/ha enfoui avant semis.

OBJECTIF DE L'ESSAI

L'objectif principal de cet essai devait être un criblage variétal de blés d'hiver.

Du fait des conditions de semis très compliquées pour cette campagne à cause de la pluie, nous avons opté pour un semis de printemps. Le but est de déterminer l'alternativité de ces variétés.

PRESENTATION DE L'ESSAI

21 variétés ont été testées sur cet essai. Sur celles-ci, seulement 4 ont été récoltées.

Le tableau ci-dessous reprend les stades des différentes variétés lors des comptages du 16 juillet 2014.

Les stades sont basés sur l'échelle BBCH présentée en annexe.

Variétés	Moyenne du stade	
Adesso	Non épié	
Attlass	66	
Belepi	84	
Camedo	Non épié	
Flamenko	70	
Gallus	55	
Ghayta	79	
Gregorius	57	
Lennox	84	
Montdor	77	
Renan	66	

Variétés	Moyenne du stade
Renan à 550 grains/m²	71
Renan 550	65
Ronsard	Non épié
Rubisko	61
Saturnus	63
Skerzzo	73
Ubicus	61
Vanilnoir	84
Wenzel	69
Wiwa	65
Moyenne générale	70

La moisson de cet essai a été réalisée le 6 aout 2014. Seules les variétés matures au moment de la récolte ont été moissonnées.

Variétés	Moyenne du rendement corrigé en Quintaux/ha	Moyenne des Protéines en %	Moyenne du PS
Belepi	28,8	12,1	58
Ghayta	24,6	14,5	60
Lennox	37,4	12,6	63
Vanilnoir	24,4	14,1	67
Moyenne générale	28,8	13,3	62

Ghayta et Vanilnoir sont sensiblement identiques en rendements et en protéines, seul le PS diverge pour ces deux variétés.

Vanilnoir à la particularité d'être un blé avec une enveloppe colorée.

ESSAI VARIETES TRITICALE D'HIVER

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Limoneux (0-50cm).

Précèdent : Epeautre.
Densité de semis : 450 grains/m².

Essai non fertilisé

OBJECTIF DE L'ESSAI

Comparaison de 13 variétés de triticale d'hiver.

PRESENTATION DE L'ESSAI

La parcelle a eu une forte pression de piétin qui peut s'expliquer par deux précédentes années en céréales dont la dernière en épeautre grêlé.

La pression en rouille jaune a été importante.

	Rendement moyen en q/ha
Tulus	38
Exagon	38
Tremplin	36
Vuka	36
Kereon	34
Grandval	33
Attlass	33
Triskell	32
Rotego	31
Bienvenue	31
Amarillo 105	29
Logo	28
Moyenne	33

ESSAI VARIETES TRITICALE DE PRINTEMPS

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Argilo-calcaire superficiel (0-50 cm).

Précèdent : Blé d'hiver.

Date de semis : 11 mars 2014.

Densité de semis : 450 grains/m².

OBJECTIF DE L'ESSAI

L'objectif est d'avoir une comparaison sur le comportement des différentes variétés de triticale de printemps et d'hiver alternatives présentes sur le marché.

PRESENTATION DE L'ESSAI

L'essai comporte 5 variétés de triticales d'hiver alternatives et de printemps.

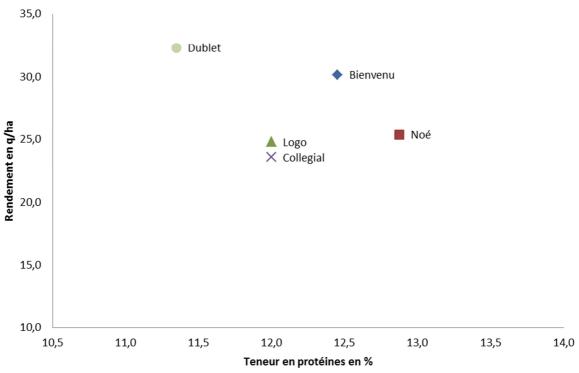
	Moyenne de l'homogénéité des levées	Moyenne des stades	Moyenne des hauteurs en cm	Moyenne de la tolérance à la ROUILLE	Moyenne de la tolérance à la septoriose
Bienvenu	4	52	56	10	8
Collegial	4	46	49	4	8
Dublet	9	59	70	10	8
Logo	8	52	57	10	2
Noé	3	53	59	8	8
Total général	5	52	58	8	7

Notations réalisées le 3 juin 2014.

Les notes des stades sont basées sur l'échelle BBCH présente en annexe.

Les notes pour les tolérances à la rouille et à la septoriose correspondent à 1 = très atteint et 10 = indemne.

Les notes de levées correspondent à 1 pour une parcelle très hétérogène et à 10 pour une parcelle totalement homogène.


Il semble que Collegial soit plus tardif que les autres variétés de cet essai.

Variété	Moyenne des hauteurs	Moyenne du nombre
	en cm	d'épis/m²
Bienvenu	80	242
Collegial	77	202
Dublet	88	254
Logo	81	241
Noé	78	236
Moyenne générale	81	235

Notations réalisées le 7 juillet 2014.

RECOLTE

Variétés	Moyenne de Rendement corrigé en Quintaux/ha	Moyenne des Protéines	Moyenne des PS
Bienvenu	30,2	12,5	56,5
Collegial	23,6	12,0	55,8
Dublet	32,3	11,4	62,8
Logo	24,8	12,0	58,2
Noé	25,4	12,9	57,8
Moyenne générale	27,3	12,1	58,2

Comme pour les blés de printemps les PS sont très faibles. Ceci est dû aux conditions climatiques de juin 2014

ESSAI FERTILISATION AZOTEE SUR BLE D'HIVER

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Argilo-calcaire superficiel (0-50 cm).

Précèdent : Blé d'hiver. Variété : Blasius.

Date de semis : 22 octobre 2013. Densité de semis : 450 grains/m²

Fertilisation, selon protocole:

- 24 octobre 2013 : Engrais organiques.- 4 mars 2014 : Engrais organiques.

Désherbage:

15 février 2014 : passage de la bineuse.12 mars 2014 : passage de la herse étrille.

OBJECTIFS DE L'ESSAI

L'essai a plusieurs objectifs :

- Acquérir des connaissances sur les fertilisants azotés du commerce utilisables en Agriculture Biologique sur blé tendre.
- Comparer le développement de la culture et des adventices en cas de fertilisation ou non.
- Rechercher des fertilisants organiques disponibles sur des exploitations en Grandes Cultures sans élevage.
- Analyser les résultats technico-économiques et la rentabilité de la fertilisation.

PRESENTATION DE L'ESSAI

Les modalités sont randomisées sur un essai en bloc de Fisher avec 4 répétitions.

Engrais	Modalité	Apports unités N/ha automne	Apports unités N/ha fin hiver
	Bluz_0+80	0	80
Bouchon de luzerne	Bluz_40+40	40	40
Bouchon de luzerne	Bluz_40+60	40	60
	Bluz_80+0	80	0
Compost fumier	CFM_0+80	0	97
mouton	CFM_80+0	97	0
	Fluz_0+80	0	80
Foin de luzerne	Fluz_80+0	80	0
	Fluz_80+80	80	80
	Org_0+100	0	100
	Org_0+80	0	80
Orgabio	Org_40+40	40	40
	Org_40+60	40	60
	Org_80+0	80	0
Témoin Non Traité	TNT_0+0	0	0
	Val_0+80	0	80
Valoris	Val_40+40	40	40
	Val_40+60	40	60

Le tableau ci-dessus présente les différentes modalités et les doses d'azote apportées. Aucun des engrais n'a été enfouis hormis lors des passages de désherbage mécanique.

Pour la modalité avec les bouchons de luzerne, cette méthode n'est pas expérimentale et ne peut être appliquée. Cette méthode sert de base de comparaison.

DEVELOPPEMENT DE L'ESSAI

Modalité	Moyenne du salissement	Moyenne des hauteurs en cm	Moyenne du Nombre d'épis/m²
Bluz_0+80	2,8	68	222
Bluz_40+40	2,3	67	211
Bluz_40+60	2,8	69	226
Bluz_80+0	3,8	67	202
CFM_0+80	2,3	63	241
CFM_80+0	3,0	69	189
Fluz_0+80	3,0	66	216
Fluz_80+0	3,0	67	210
Fluz_80+80	3,5	69	204
Org_0+100	3,5	74	251
Org_0+80	4,0	73	271
Org_40+40	3,5	68	239
Org_40+60	4,3	71	238
Org_80+0	4,3	67	235
TNT_0+0	2,0	66	188
Val_0+80	4,8	69	228
Val_40+40	3,8	67	237
Val_40+60	4,5	70	264
Moyenne générale	3,4	68	226

Ces notations ont été réalisées le 3 juin 2014.

Pour les notes de salissement, la note 10 correspond à une parcelle infestée en adventices. La note 1 correspond à une parcelle indemne.

En unités d'azote/ha

Produit	Apport d'automne	Apport de printemps	Rendement en q/ha	Protéines	PS
Bouchon de luzerne	0	80	16,6	9,9	70,8
Bouchon de luzerne	40	40	14,8	9,9	71,4
Bouchon de luzerne	40	60	16,8	9,7	71,6
Bouchon de luzerne	80	0	13,5	10	71,2
Compost fumier mouton	0	80	14,3	9,6	71,5
Compost fumier mouton	80	0	13,9	9,7	71,3
Foin de luzerne	0	80	14,7	9,7	70,7
Foin de luzerne	80	0	13,8	9,8	72,7
Foin de luzerne	80	80	12,6	9,9	71
Orgabio	0	100	21,5	10,3	70,3
Orgabio	0	80	20,8	10,1	69,6
Orgabio	40	40	16,7	9,9	70,5
Orgabio	40	60	17,8	10,4	68,9
Orgabio	80	0	14,2	9,8	70,9
TNT	0	0	11,6	10,2	71,1
Valoris	0	80	19,0	10,4	69,9
Valoris	40	40	15,4	10,1	70,7
Valoris	40	60	21,6	10,3	70,6
Moyenne			16,1	10,0	70,8

Du fait d'une pluviométrie importante au moment de la récolte, les blés ont été pénalisés qualitativement (PS).

En effet une partie de cet essai était germé au moment de la moisson (estimation 20 %) sans distinction sur les modalités.

Nous supposons que la minéralisation de la luzerne est plus lente que les engrais du commerce, elle fut moins assujettie au lessivage hivernal.

Après étude des rendements, du taux de protéine et de la marge brute, nous pouvons tirer les conclusions suivantes :

La modalité ayant le mieux réagit est celle fertilisée à l'aide du Valoris, avec un rendement de 21,6 q/ha. Le témoin 0 obtient un rendement de 12 q/ha.

Deux résultats peuvent surprendre : le Valoris 40+40 et l'Orgabio 80+0, ces échecs pourraient s'expliquer par une minéralisation pré hivernale rapide pour ces engrais, et un lessivage ou une volatilisation de l'azote durant l'hiver, ce qui n'a pas permis au blé de valoriser l'azote.

En ce qui concerne le taux de protéine, aucune des modalités n'est supérieure à 10.5%, le blé est donc déclassé en fourrager. Les modalités fertilisées avec le Valoris et l'Orgabio ont, en moyenne, des teneurs en protéine plus élevées (10,3 à 10,4).

DONNEES ECONOMIQUES

Les bases de calcul sont les suivantes :

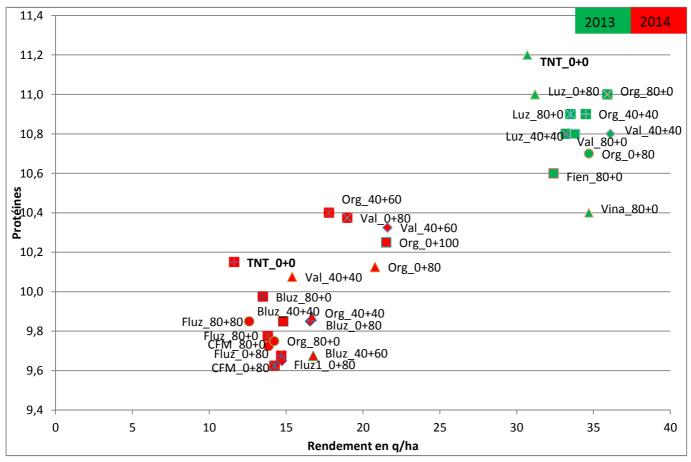
Fertilisant	N (en %)	P2O5 (en %)	K2O (en %)	Prix en euros ramené à l'unité d'azote
BOUCHON DE LUZERNE	2,7	1,0	2,5	8,1
FOIN DE LUZERNE	2,7	1,0	3,0	5,5
FUMIER DE MOUTON COMPOSTE	9,7	5,6	13,4	2,5
ORGABIO	9,0	9,0	0,0	3,6
VALORIS	9,0	5,0	10,0	4,0

Les prix indiqués sont une moyenne constatée. Les charges d'épandage ne sont pas prises en compte.

	Apport automne en unité d'azote	Apport hiver en unité d'azote	Rendement en q/ha	Coût de l'azote total en euro/ha	Marge brute en euro/ha	Ecart TNT en euro/ha
ORGABIO	0	80	21	288 €	389 €	40 €
TEMOIN NON TRAITE	0	0	12		349 €	
VALORIS	0	80	19	320 €	345 €	-4 €
ORGABIO	0	100	22	360 €	339 €	-10€
VALORIS	40	40	22	320 €	294 €	-54 €
COMPOST DE FUMIER DE MOUTON	0	80	14	200 €	228 €	-121 €
ORGABIO	40	60	18	360 €	217 €	-132 €
COMPOST DE FUMIER DE MOUTON	80	0	14	200 €	216 €	-133 €
ORGABIO	40	40	17	288 €	212 €	-136 €
VALORIS	40	40	15	320 €	142 €	-207 €
ORGABIO	80	0	14	288 €	139 €	-210 €
FOIN DE LUZERNE	0	80	15	440 €	2€	-347 €
FOIN DE LUZERNE	0	80	15	440 €	0€	-348 €
FOIN DE LUZERNE	80	0	14	440 €	-26 €	-374 €
BOUCHON DE LUZERNE	0	80	17	648 €	-151 €	-500 €
BOUCHON DE LUZERNE	40	40	15	648 €	-204 €	-552 €
BOUCHON DE LUZERNE	80	0	13	648 €	-244 €	-592 €
BOUCHON DE LUZERNE	40	60	17	810 €	-307 €	-656 €
FOIN DE LUZERNE	80	80	13	880 €	-502 €	-851 €

Les marges brutes ont été calculées à partir d'un prix de blé à la tonne moyen soit : - 300 euros pour un blé fourrager - 400 euros pour un panifiable.

Nous ne tenons pas compte du poids spécifique dans cette approche. La meilleure marge brute est obtenue par l'Orgabio 0+80 (+389 euro/ha).


L'apport phospho-potassique n'est pas intégré dans le calcul des marges brutes. Le compost de fumier de mouton, le Valoris et l'Orgabio sont donc désavantagés.

Actuellement, en sol superficiel, cette étude ne permet pas de classer la luzerne dans la catégorie des fertilisants car elle n'impacte pas significativement les rendements et la teneur en protéines. Globalement, les apports sortie hiver ont mieux réagit.

La poursuite de l'essai envisagé serait de fertiliser le blé avec de la luzerne fraiche, c'est-à-dire l'incorporer dès le fauchage et avant le semis de la culture suivante.

APPROCHE PLURIANNUEL

Ce graphique compare les essais de 2012-2013 et 2013-2014 sur la variété Blasius.

L'effet année est plus important que l'effet fertilisation que ce soit sur le rendement ou sur les protéines.

En 2014, la différence de la meilleure modalité avec le témoin est supérieure de ce que l'on constate en 2013.

ESSAI INTERACTION AZOTE – SOUFRE SUR BLE D'HIVER

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plateaux.

Type de sol : Argilo - calcaire superficiel (0-50 cm). Précèdent : Blé d'hiver, antéprécédent luzerne.

Variété testeur : Blasius.

Date de semis : 10 octobre 2013. Densité de semis : 450 grains/m².

OBJECTIFS DE L'ESSAI

Déterminer s'il existe un effet soufre sur le rendement et la qualité du blé.

Déterminer les interactions azote – soufre si elles existent.

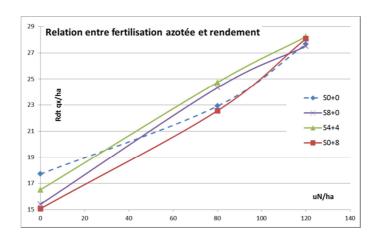
Définir une courbe de réponse à l'azote.

PROTOCOLE

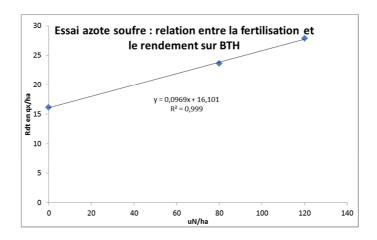
Les doses d'azote appliquées sont de : 0, 80 et 120 unités d'azote/ha sous forme d'Orgabio. L'apport est effectué le 10 mars 2014.

Les doses de soufre sont de 0 ou 8 kg/ha sous forme de soufre pour pulvérisation apporté au stade 2 nœuds et/ou dernière feuille du blé ou fractionnés entre le premier stade et le second.

Le tableau ci-dessous reprend les différentes modalités testées


Dose d'azote uN/ha	Soufre à 2 nœuds kg/ha	Soufre à DFE kg/ha	Dénomination
0	0	0	N0_S0+0
0	8	0	N0_S8+0
0	4	4	N0_S4+4
0	0	8	N0_S0+8
80	0	0	N80_S0+0
80	8	0	N80_S8+0
80	4	4	N80_S4+4
80	0	8	N80_S0+8
120	0	0	N120_S0+0
120	8	0	N120_S8+0
120	4	4	N120_S4+4
120	0	8	N120_S0+8

Le dispositif expérimental est construit en blocs de Fisher à 4 répétitions


RESULTATS ET DISCUSSIONS

Comme le montre le graphique ci-dessous, on constate une forte réponse à la dose d'azote au niveau du rendement.

L'analyse de variance ne montre pas de différences significatives au niveau de l'effet des apports de soufre, mais elle indique une interaction azote - soufre. Pour une fertilisation de 80 unités d'azote/ha, l'apport de soufre à 2 nœuds tendrait à accroître le rendement du blé par rapport aux modalités n'en recevant pas.

La courbe de réponse à l'azote indique qu'il faut pratiquement 10 unités d'azote/ha pour produire un quintal de blé supplémentaire.

La faible augmentation de rendement induite par la fertilisation azotée et par les apports de soufre conduit à ce que le témoin obtienne la meilleur marge brute comme le montre le tableau suivant.

	Moyenne de Rdt	Moyenne de Proteines	Moyenne de Produit E/ha	Moyenne de ChOP E/ha	Moyenne de Marges E/ha
N0_S0+0	18	<u>0</u> 10,1	572	0	572
N80_S0+8	<u>23</u>	10,6	<u> </u>	<u>0</u> 304	538
N0_S4+4	17	9,8	534	<u> </u>	518
N120_S0+0	28	10,8	944	432	512
N120_S8+0	28	0 10,7	947	448	<u> </u>
N80_S0+0	<u> </u>	0 10,3	<u> </u>	<u> </u>	<u> </u>
N120_S4+4	28	10,4	909	448	<u> </u>
N120_S0+8	28	10,0	897	448	<u> </u>
N0_S8+0	15	9,9	462	16	446
N80_S4+4	<u> </u>	<u>0</u> 10,1	<u> </u>	<u> </u>	438
N0_S0+8	15	9,8	452	16	436
N80_S8+0	<u> </u>	<u>0</u> 10,0	<u> </u>	<u> </u>	426

Puce verte = niveau élevé Puce jaune = niveau moyen Puce rouge = niveau bas

ESSAI FERTILISATION BLE TENDRE D'HIVER

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plaine de Dijon.

Type de sol : Argilo limoneux profond (supérieur à 90 cm).

Précèdent : Soja.

Date de semis : Mi-octobre.

Densité de semis : 450 grains/m².

Variété : PIRENEO.

Fertilisation : Selon protocole, tous les apports étant homologués en A.B.

OBJECTIF DE L'ESSAI

Evaluer le trèfle et la luzerne comme fertilisants alternatifs sur blé d'hiver.

PROTOCOLE

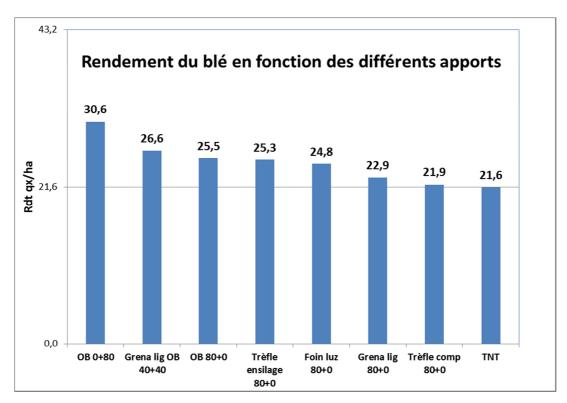
On apporte sur chaque modalité l'équivalent brut de 80 unités d'azote/ha. Selon le cas les apports sont réalisés à l'automne et/ou printemps. Sur le tableau ci-dessous figurent les différents fertilisants testés et la répartition des quantités d'azote apportées en unité d'azote brute par hectare.

Dénomination	Étiquettes de lignes	Azote à l'automne	Azote en fin d'hiver	Azote total uN/ha
Foin de luzerne broyé à l'automne	Foin luz 80+0	80	0	80
Grena sur la ligne de semis à l'automne	Grena lig 80+0	80	0	80
Grena sur la ligne de semis à l'automne 40 uN/ha et OrgaBio au printemps 40 uN/ha	Grena lig OB 40+40	40	40	80
OrgaBio à l'automne	OB 80+0	80	0	80
OrgaBio au printemps	OB 0+80	0	80	80
Trèfle composté à l'automne	Trèfle comp 80+0	80	0	80
Trèfle ensilage à l'automne	Trèfle ensilage 80+0	80	0	80
Témoin	TNT	0	0	0

Les deux modalités trèfle sont issues d'une même provenance. Le trèfle composté est issu du bord du tas et le trèfle ensilage est issu du centre du tas. Cet endroit tassé n'a pas subi de fermentation aérobie.

Les apports de trèfle ont été effectués juste avant le semis du blé.

Les autres apports d'automne sont effectués au stade 1-2 feuilles du blé. Les apports de fin d'hiver sont réalisés le 25 février 2014.


Tous les apports sont réalisés en surface et non incorporés (sauf par le désherbage mécanique)

Le dispositif est construit en blocs de Fischer à trois répétitions.

RESULTATS ET DISCUSSIONS

Même fertilisée, la variété Pirénéo ne parvient pas à obtenir un rendement élevé. Ceci provient sans doute de ses problèmes de fertilité d'épis qui surviennent lorsque se produit un stress d'alimentation azotée pendant la montaison.

L'Orgabio (OB), positionné au printemps obtient le meilleur rendement ; le positionnement de ce fertilisant à l'automne réduit son efficacité relative au témoin de 19% en terme de rendement.

L'ensilage de trèfle et le foin de luzerne ont un effet positif sur le rendement. Le compost de trèfle n'a pas d'effet sur le rendement.

Modalités	Moyenne de Rdt q/ha	Rdt – TNT en %	Protéines %	PS Kg/hl	uN/q produit	Azote immobilisé /q (uN)	C.A.U. de N %
OB 0+80	30,6	142%	9,4	75,8	2,36	72	25,3
Grena lig OB 40+40	26,6	123%	9,2	75,1	2,30	61	11,3
OB 80+0	25,5	118%	9,4	75,5	2,33	59	9,1
Trèfle ensilage 80+0	25,3	117%	9,4	75,4	2,33	59	8,9
Foin luz 80+0	24,8	115%	9,3	75,3	2,31	57	6,6
Grena lig 80+0	22,9	106%	9,5	74,8	2,34	53	1,8
Trèfle comp 80+0	21,9	102%	9,3	75,3	2,27	50	-2,4
TNT	21,6	100%	9,7	75,5	2,40	52	
Moyenne	24,9		9,4	75,3	2,33	58	8,7

Le coefficient apparent de l'azote utilisé provenant des fertilisants est globalement très faible. Même l'Orgabio (OB 0+80) apporté au printemps ne parvient pas à avoir un C.A.U. de l'azote de 50%. Ceci est la conséquence de la sècheresse de mars et d'avril.

CONCLUSIONS

Cet essai en sol profond démontre une certaine « aptitude » du foin de luzerne et de l'ensilage de trèfle épandus à l'automne à fournir de l'azote au blé. Toutefois l'efficience de ces apports est faible et l'on peut considérer que les pertes d'azote sont importantes. Il serait sans doute souhaitable d'incorporer cette matière verte avant le semis du blé.

ESSAI FERTILISATION LUZERNE

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Plaine de Dijon.

Type de sol : Argilo limoneux profond (supérieur à 90 cm).

Date de semis : 15 avril 2013 sous couvert d'orge de printemps.

Densité de semis : 23 kg/ha.

Espèces et variétés : Mélange de luzerne Marchal 1/3 + Timbale 2/3 et + mélange de

graminées : dactyle, fléole et fétuque élevée en faible quantité.

OBJECTIF DE L'ESSAI

Evaluer l'effet de fertilisants sur la production de biomasse d'une luzerne.

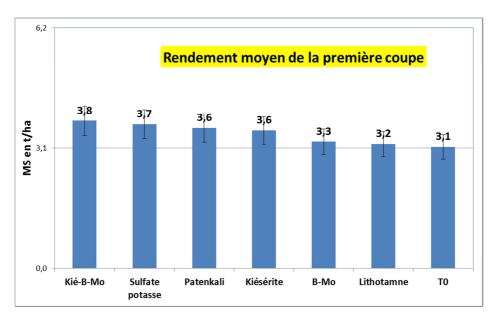
PROTOCOLE

Comparaison de quatre modalités d'engrais avec un apport identique de 80 unités/ha de soufre et introduction d'une modalité avec apport de bore - molybdène ainsi que l'introduction d'une modalité avec apport de lithothamne.

Modalités	Dénomination	Apport de soufre unités de SO ₃ ha	
Bore – molybdène en apport foliaire	B-Mo	0	
Kiésérite (sulfate de magnésie) 160 kg/ha	Kiésérite	80	
Kiésérite plus oligoéléments bore - molybdène	Kié-B-Mo	80	
Lithothamne 200 kg/ha	lithothamne	0	
Patenkali (sulfate double de potasse et de magnésie) 190 kg/ha	Patenkali	80	
Sulfate de potasse 178 kg/ha	Sulfate potasse	80	
Témoin sans aucun apport	ТО	0	

Le dispositif est monté en blocs de Fischer et comprend trois répétitions.

Les apports de fertilisants et d'oligoéléments sont réalisés chaque année d'exploitation de la luzerne en début de végétation.


Pour des raisons d'aléas climatiques seules les premières coupes de 2013 et 2014 sont réalisées.

Comme l'indique le tableau suivant sur les deux années d'exploitation les modalités apportant 80 unités de sulfate par ha procurent les meilleurs rendements en terme de matière sèche produite par la première coupe (cases en vert).

	Luzerne MS T/ha		
	Année d'exploitation		
Modalité	2013 2014 N		Moyenne
Kié-B-Mo	3,3	4,3	3,8
Sulfate potasse	3,2	4,2	3,7
Kiésérite	3,1	4,0	3,6
Patenkali	3,1	4,1	3,6
В-Мо	2,9	3,6	3,3
Lithothamne	3,1	3,4	3,2
ТО	2,6	3,6	3,1
Moyenne	3,0	3,9	3,5

Le graphique ci-dessous, montre que les écarts maximum constatés par rapport au témoin sont de l'ordre de 10%. La combinaison kiésérite plus oligoéléments semble procurer un léger effet supplémentaire.

Il est dommage que seules les premières coupes soient récoltées et que l'on ne puisse mesurer les effets globaux annuels et pluriannuels permettant d'entériner ces remarques. Quoi qu'il en soit, cet essai montre encore un fois que l'apport de sulfate sous forme de sels de magnésie et/ou de potasse stimule la production de biomasse de luzerne. Pour limiter les coûts, la quantité de sulfate à apporter serrait de l'ordre de 80 unités/ha (SO₃).

ESSAI IMPACT DES INTERCULTURES SUR UNE ORGE DE PRINTEMPS

RENSEIGNEMENTS PARCELLAIRES

Situation géographique : Vallée de la Vanne.

Type de sol : Argile à silex moyen (0-50 centimètres).

Précèdent : Blé d'hiver.

Date de semis des engrais verts : 14 août 2013.

Date de destruction des engrais verts : 11 décembre 2013.

Mode de destruction des engrais verts : Broyage + labour dans les 24 heures.

Densité de semis : 400 grains/m²

Absence de fertilisation.

OBJECTIFS DE L'ESSAI

Cet essai a pour but d'aider les agriculteurs dans le choix de leurs intercultures.

Les modalités testées doivent pouvoir gérer les adventices qui ne pourront pas être éliminés faute de travail du sol et, dans certains cas, d'apporter de l'azote à la culture suivante.

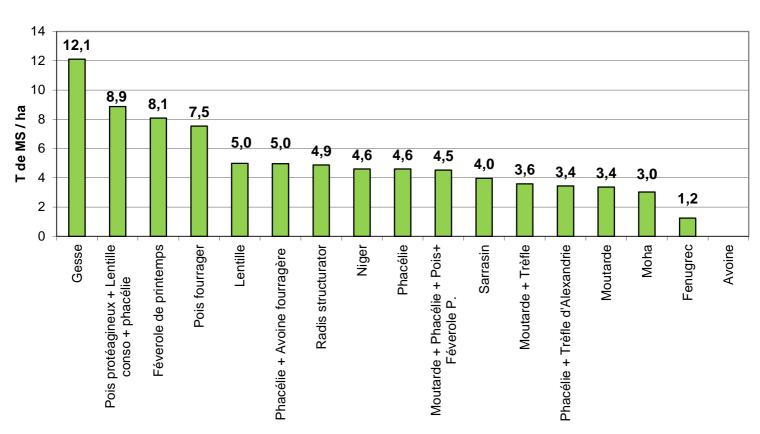
Cet essai est à prendre avec précaution car certaines modalités sont en légumineuses pures. La perte d'azote par lessivage n'a pas été comptabilisée.

PRESENTATION DE L'ESSAI

Cet essai a été réalisé en bandes de 4 mètres de large par 40 mètres de long. 18 modalités pures ou en mélanges, étaient testées.

La récolte a été effectuée à l'aide d'une micro-batteuse d'expérimentation.

3 répétitions ont été réalisées par modalité afin d'optimiser les résultats.


L'été 2013 a été chaud et humide. Les semis ont été effectués la veille d'une pluie, ce qui a permis une levée rapide.

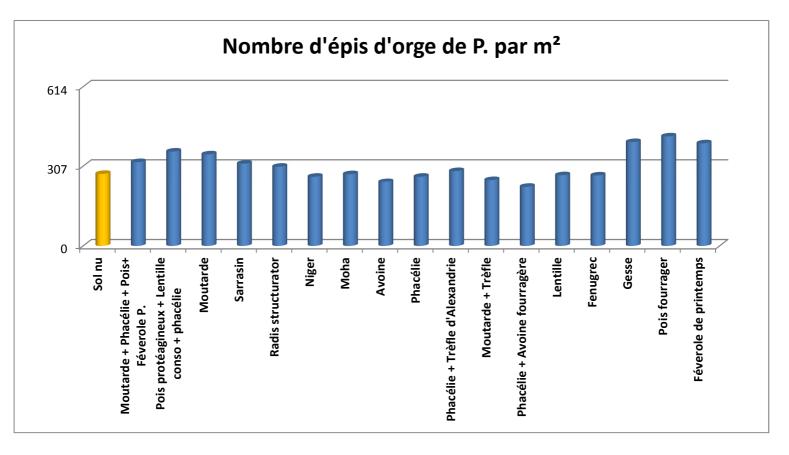
La durée de végétation est d'environ 100 jours avec des températures clémentes en fin de cycle. Cela a permis un développement important de biomasse.

Les tonnages de matières vertes sont réalisés hors adventices.

Les modalités à base d'avoine sont impactées par une mauvaise levée, une faible densité et une mauvaise répartition, ce qui se traduit par de très faibles biomasses.

Tonnes de Matières Sèches / ha

Produire plus de 5 tonnes de matières sèches entre le 15 août et le début décembre reste très difficile à reproduire.



DEVELOPPEMENT DE l'ORGE DE PRINTEMPS

Les notations ci-dessous ont été réalisées le 23 mai 2014.

	Hauteur en cm	Recouvrement	Développement
Sol nu	28	3	4
Moutarde + Phacélie + Pois+ Féverole P.	28	4	4
Pois protéagineux + Lentille conso + phacélie	37	6	6
Moutarde	32	5	5
Sarrasin	30	5	5
Radis structurator	28	5	5
Niger	26	4	5
Moha	27	4	5
Avoine	28	4	5
Phacélie	22	3	5
Phacélie + Trèfle d'Alexandrie	28	4	4
Moutarde + Trèfle	25	3	4
Phacélie + Avoine fourragère	25	3	4
Lentille	28	3	3
Fenugrec	24	2	3
Gesse	38	6	5
Pois fourrager	32	5	4
Féverole de printemps	32	5	5

Les notations de recouvrement et développement correspondent à 1 = très faible et 10 = très élevé. La moyenne de la hauteur de l'orge à la date de la notation est de 29 centimètres.

La moyenne du nombre d'épis d'orge de printemps dans cet essai est de 307 épis/m². Les modalités fournissant de l'azote à la culture sont en générales, supérieures à la moyenne.

MOISSON DE L'ORGE DE PRINTEMPS

Modalité	Moyenne de Rendement aux normes en Q/ha	Moyenne de Calibrage	Moyenne de Protéine	Moyenne de PS
Gesse	54,8	96,2	8,6	60,7
Féverole de printemps	49,2	96,7	8,1	60,3
Pois protéagineux + Lentille conso + phacélie	48,5	96,7	8,3	60,7
Moutarde + Phacélie + Pois+ Féverole P.1	47,8	96,1	8,2	60,3
Pois fourrager	46,5	95,9	8,5	60,2
Moutarde + Phacélie + Pois+ Féverole P.	44,0	96,6	8,2	60,4
Moutarde	34,4	97,0	8,1	59,3
Sarrasin	34,2	96,5	8,4	58,7
Radis structurator	33,1	97,6	8,4	59,3
Sol nu	29,9	96,1	8,1	58,5
Lentille	29,4	96,8	8,9	57,4
Niger	28,5	97,4	8,3	58,6
Phacélie + trèfle d'Alexandrie	27,0	96,4	8,4	57,5
Phacélie	25,0	96,5	8,7	57,8
Avoine	24,8	96,8	8,4	57,6
Fenugrec	24,3	96,4	9,4	56,8
Moutarde + Trèfle	22,6		8,6	56,7
Moha	22,5	96,4	8,5	56,6
Phacélie + avoine fourragère	19,7	95,4	9,2	56,1
Moyenne générale	34,0	96,5	8,5	58,6 35

35

Il ressort trois types de modalités : celles qui ont un effet positif sur le rendement, celles qui ont un effet neutre et celles ayant un effet négatif.

Ceci peut être rapproché de l'effet azote de la CIPAN sur l'orge de printemps.

Les modalités qui semblent céder de l'azote à la culture ont des PS plus élevés.

L'agriculteur a semé une luzerne sous couvert de l'orge de printemps. Cette dernière a pu pénaliser les modalités qui ont eu un faible développement.

ESSAI LUTTE AGRONOMIQUE CONTRE LA FOLLE AVOINE (Avena fatua)

RENSEIGNEMENTS PARCELLAIRES

Type de sol : Argilo-limoneux superficiel (0-20 cm) sur sous-sol profond imperméable.

Précédent : Pois de printemps.

Culture: Blé d'hiver.

OBJECTIF DE L'ESSAI

Cette expérimentation a pour but de trouver des réponses face à l'emprise grandissante de la folle avoine (Avena fatua sp) dans les champs céréaliers bio de la région Bourgogne.

On teste différentes modalités de travail du sol et d'écimage en conditions « agriculteur » afin de comparer leurs efficacités relatives.

PROTOCOLE

Le dispositif est construit en bandes, après un comptage de situation initiale en juin 2012 sur orge d'hiver.

Les placettes sont conduites de manière identique à la parcelle agriculteur, seuls les paramètres travail du sol et d'écimage sont différenciés.

La parcelle a été écimée en totalité en juin 2012, puis partiellement en juin 2013. En 2014, les folles avoines ont monté en même temps que la culture de blé d'hiver (variété à paille haute) ce qui n'a pas permis l'écimage.

Les mesures réalisées ont été le nombre de talles épiées de folle avoine au m² par placette. Les comptages sont réalisés en juin de chaque année.

Travail du sol:

En 2013, après un an de traitement différencié, la partie labourée profondément présente un taux de décroissance des talles de folle avoine de 15% plus élevé que les autres modalités. Voir tableau ci-dessous.

Cependant, en 2014, toutes les placettes ont été uniquement déchaumées (pour ne pas remettre en germination des folles avoines enfouies profondément), l'ensemble des placettes présente un niveau d'infestation homogène. La parcelle labourée deux fois à la charrue déchaumeuse présente un salissement équivalent aux autres mais les stades de la folle avoine ont été retardés.

Nombre de talles de folle avoine épiées en juin	juin-12	juin-13	juin-14	Evolution 2012 - 2013	Evolution 2013 - 2014	Evolution 2012 - 2014
Travail du sol mars 2013 puis reprise outil à dent hiver 2014	86	41	32	-52%	-22%	-63%
Labour classique mars 2013 puis reprise outil à dent hiver 2014	62	19	27	-69%	42%	-56%
Labour agro mars 2013 puis reprise outil à dent hiver 2014	85	43	39	-49%	-9%	-54%
Labour agro mars 2013 puis labour agro mars 2014	81	38	38	-53%	0%	-53%

L'évolution 2013-2014 montre que le labour profond (25 cm) perd son avantage rapidement sur cette adventice à taux annuel de décroissance modéré, de même que le labour agronomique (15 cm).

Par contre, l'évolution 2012-2014 indique que les modalités sont quasi équivalentes.

Ecimage:

En revanche, l'utilisation de l'écimeuse en 2012 et en 2013 a permis de réduire de manière très importante l'infestation.

	Evolution entre 2013-2014		
Combinaison de travaux du sol 2013 et 2014	Modalité non écimée en 2013-2014	Ecimé en 2013 et non écimé 2014	Evolution 2012- 2014
Travail du sol mars 2013 puis reprise outil à dent hiver 2014	-27%	-89%	-58%
Labour agro mars 2013 puis reprise outil à dent hiver 2014	-26%	-76%	-51%
Labour classique mars 2013 puis reprise outil à dent hiver 2014	-10%	-84%	-47%
Labour agro mars 2013 puis labour agro mars 2014	14%	-80%	-33%

CONCLUSION

Les modalités de travail du sol testées n'ont pas montré de différences significatives sur l'infestation en folle avoine sur les deux années d'expérimentation, là où l'écimage a montré un réel intérêt.

Dans tous les cas, si vous prévoyez d'écimer, penser à utiliser une variété à paille courte!

Ces résultats nécessitent toutefois de la prudence dans leur mise en pratique car :

Les effets réels des pratiques de travail du sol ne sont parfois visibles qu'au bout de 5 à 10 ans.

Les deux années d'expérimentation ont été soumises à des climats atypiques (printemps très humide en 2013 suivi d'un hiver sans gel marqué), qui ne sont peut-être pas totalement représentatifs d'années « normales », sachant que la folle avoine est l'une des adventices qui est le plus influencée par le climat, et notamment par le gel hivernal.

Le cout de l'écimeuse est à mettre en lien avec le réel gain économique (rendement) qui peut être escompté du fait du contrôle des folles avoines.

Dès cette année, une seconde plateforme de ce type a été mise en place pour aller plus loin dans les paramètres étudiés et consolider les informations présentées dans ce compte-rendu.

ESSAI DESHERBAGE MECANIQUE

RENSEIGNEMENTS PARCELLAIRES

Type de sol : Limon battant à silex.

Précédent : Pois protéagineux de printemps ayant une forte pression adventices.

Culture : Blé. Variété : Arezzo

Date de semis: 13 décembre 2013.

Densité de semis : 450 grains/m², avec semoir a disques.

Préparation du sol : Labour début octobre 2013.

Reprise de labour avec herse rotative.

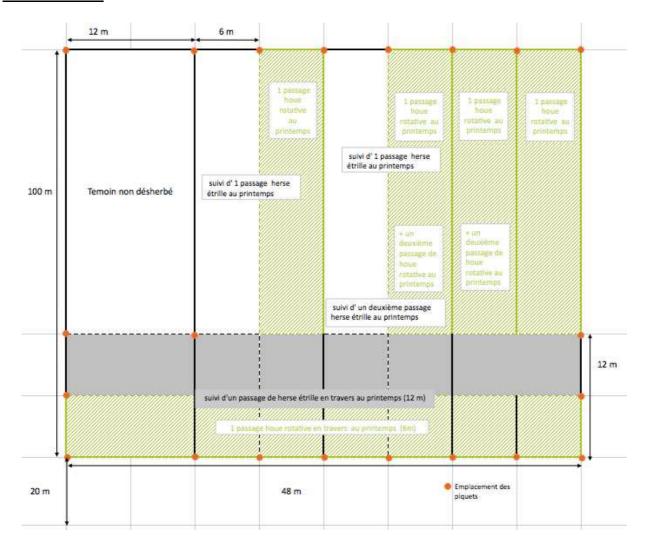
OBJECTIF DE L'ESSA

Tester l'efficacité du désherbage mécanique sur des terres argilo-limoneuses à silex. En effet, ces sols, ayant une charge en cailloux importante et un mauvais réessuyage de surface, laissent des fenêtres d'interventions courtes pour l'utilisation du matériel de désherbage mécanique.

Un essai avait déjà été conduit en 2011 pour évaluer l'efficacité de la herse étrille. Pour ce deuxième essai, l'objectif est de mesurer l'efficacité et la sélectivité de deux outils de désherbage mécanique : herse étrille et/ou houe rotative.

MATERIELS ET METHODES

Dispositif expérimental :


L'essai est mené en bandes sans répétition.

La largeur des bandes est déterminée par celle des outils de désherbage mécanique de l'agriculteur:

- Largeur herse étrille : 12 m

Largeur houe rotative inversée : 6 m

Plan de l'essai :

Passage d'outils :

Passages outils désherbage mécanique :

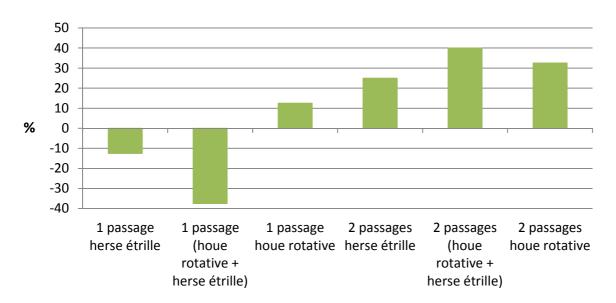
1. Passages stade début tallage

Passage houe rotative 1 : 12 mars Passage herse étrille 1 : 14 mars

2. Passages stade fin tallage

Passage houe rotative 2 : 12 avril Passage herse étrille 2 : 14 avril

RESULTATS ET DISCUSSIONS


Perte en culture :

La perte en culture définit le pourcentage de la culture détruite lors du désherbage mécanique. Elle est liée à : la culture, son stade et sa profondeur d'enracinement et l'agressivité des outils de désherbage mécanique (réglage et vitesse d'avancement).

Les pertes sont les mêmes sur les différentes modalités avec le même outil, ce qui signifie que seul le passage au stade tallage a détruit du blé. Elles sont moindres avec la herse étrille seule (12%), qu'avec la houe rotative seule (30 %).

L'efficacité :

Il s'agit du nombre de plantes détruites lors du passage de la herse étrille. Elle ne tient pas compte des relevées éventuelles engendrées par ce passage.

Graphique : Evolution du nombre d'adventices, en pourcentage par rapport au témoin non désherbé (100 %)

Globalement, l'efficacité relative du désherbage au stade début tallage a été satisfaisante pour la herse étrille et la herse étrille combinée à la houe rotative, réduisant fortement les dicotylédones. La houe rotative seule a eu moins d'efficacité.

Le deuxième passage a eu une faible efficacité, pour tous les outils et combinaison d'outils. On peut faire l'hypothèse que les adventices étaient trop développées. La herse étrille et la houe rotative n'ont d'efficacité que sur des adventices très jeunes.

Le désherbage mécanique sur la culture en place devait s'effectuer à deux périodes : à l'automne et au printemps, selon 10 modalités différentes.

Au vu des conditions météo très humides de l'automne 2013, la culture a été semée très tardivement (mi-décembre) et les passages d'automne ne se sont pas faits. Seuls les passages de printemps ont été réalisés. Le protocole a donc été réadapté avec uniquement les passages de printemps.

Par ailleurs, en lien avec le semis tardif, il n'y avait pratiquement aucune graminée adventice, et une pression dicotylédones relativement faible. Les comptages se sont donc uniquement fait sur dicotylédones. Cet essai sera renouvelé lors de la prochaine campagne afin de confirmer les résultats obtenus sur cette campagne atypique.

ANNEXE

Échelle BBCH améliorée, les échelles individuelles

Céréales Witzenberger et al., 1989; Lancashire et al., 1991

Échelle BBCH des stades phénologiques des cereales

(froment, blé = Triticum sp. L., orge = Hordeum vulgare L., avoine = Avena sativa L., seigle = Secale cereale L.)

Code	Définition
Stade	orincipal 0: germination, levée
00	semence sèche (caryopse sec)
01	début de l'imbibition de la graine
03	imbibition complète
05	la radicule sort de la graine
06	élongation de la radicule, apparition de poils absorbants et développement des racines secondaires
07	le coléoptile sort de la graine
09	levée: le coléoptile perce la surface du sol
Stade	principal 1: développement des feuilles ^{1, 2}
10	la première feuille sort du coléoptile

10	la première feuille sort du coléoptile
11	première feuille étalée
12	2 feuilles étalées
13	3 feuilles étalées
1.	et ainsi de suite
19	9 ou davantage de feuilles étalées

Stade principal 2: le tallage³

20	aucune talle visible
21	début tallage: la première talle est visible
22	2 talles visibles
23	3 talles visibles
2.	et ainsi de suite
29	fin tallage

¹ Une feuille est étalée si sa ligule est visible ou si l'extrémité de la prochaine feuille est visible

² Le tallage ou l'élongation de la tige principale peut intervenir avant le stade 13, dans ce cas continuez avec le stade 21

³ Si l'élongation de la tige principale commence avant la fin du tallage alors continuez au stade 30.

Céréales Witzenberger et al., 1989; Lancashire et al., 1991

Échelle BBCH des stades phénologiques des cereales

Code	Définition
Stade p	orincipal 3: élongation de la tige principale
30	début montaison: pseudo-tiges et talles dressées, début d'élongation du premier entre-nœud, inflorescence au plus à 1 cm au-dessus du plateau de tallage.
31	le premier nœud est au plus à 1 cm au-dessus du plateau de tallage
32 33	le deuxième nœud est au plus à 2 cm au-dessus du premier nœud le troisième nœud est au plus à 2 cm au-dessus du deuxième nœud
3.	et ainsi de suite
37	la dernière feuille est juste visible, elle est encore enroulée sur elle-même
39	le limbe de la dernière feuille est entièrement étalé, la ligule est visible
Stade p	orincipal 4: gonflement de l'épi ou de la panicule, montaison
41	début gonflement: élongation de la gaine foliaire de la dernière feuille
43	la gaine foliaire de la dernière feuille est visiblement gonflée
45	gonflement maximal de la gaine foliaire de la dernière feuille
47	la gaine foliaire de la dernière feuille s'ouvre
49	les premières arêtes (barbes) sont visibles (pour les variétés aristées)
Stade p	orincipal 5: sortie de l'inflorescence ou épiaison
51	début de l'épiaison: l'extrémité de l'inflorescence est sortie de la gaine, l'épillet supérieur est visible
52	20% de l'inflorescence est sortie
53	30% de l'inflorescence est sortie
54	40% de l'inflorescence est sortie
55	mi-épiaison: 50% de l'inflorescence est sortie
56	60% de l'inflorescence est sortie
57	70% de l'inflorescence est sortie
58	80% de l'inflorescence est sortie
59	fin de l'épiaison: l'inflorescence est complètement sortie
	de la gaine
-	orincipal 6: floraison, anthèse
61	début floraison, les premières anthères sont visibles
65	pleine floraison, 50% des anthères sont sorties
69	fin floraison, tous les épillets ont fleuri, quelques anthères desséchées peuvent subsister

Céréales Witzenberger et al., 1989; Lancashire et al., 1991

Échelle BBCH des stades phénologiques des cereales

Code	Définition
Stade p	orincipal 7: développement des graines
71	stade aqueux: les premières graines ont atteint la moitié de leur taille finale
73	début du stade laiteux
75	stade milaiteux: contenu de la graine laiteux, les graines ont atteint leur taille finale mais sont toujours vertes
77	fin du stade laiteux
Stade p	orincipal 8: maturation des graines
83	début du stade pâteux
85	stade pâteux mou: contenu de la graine tendre mais sec, une empreinte faite avec l'ongle est réversible
87	stade pâteux dur: contenu de la graine dur, une empreinte faite avec l'ongle est irréversible
89	maturation complète: le caryopse est dur et difficile à couper en deux avec l'ongle
Stade p	orincipal 9: sénescence
92	sur-maturité: le caryopse est très dur, ne peut pas être marqué à l'ongle
93	des graines se détachent
97	la plante meurt et s'affaisse
99	produit après récolte